Histoplasma capsulatum modulates the acidification of phagolysosomes

نویسندگان

  • L G Eissenberg
  • W E Goldman
  • P H Schlesinger
چکیده

The phagolysosome is perhaps the most effective antimicrobial site within macrophages due both to its acidity and to its variety of hydrolytic enzymes. Few species of pathogens survive and multiply in these vesicles. However, one strategy for microbial survival would be to induce a higher pH within these organelles, thus interfering with the activity of many lysosomal enzymes. Altering the intravesicular milieu might also profoundly influence antigen processing, antimicrobial drug delivery, and drug activity. Here we report the first example of an organism proliferating within phagolysosomes that maintain a relatively neutral pH for a sustained period of time. We inoculated P388D1 macrophages with fluorescein isothiocyanate (FITC)-labeled Histoplasma capsulatum or zymosan. Using the ratio of fluorescence excitations at 495 and 450 nm, we determined that vesicles containing either virulent or avirulent FITC-labeled H. capsulatum yeasts had a pH one to two units higher than vesicles containing either zymosan or methanol-killed H. capsulatum. The difference in pH remained stable for at least 5.5 h postinoculation. Longer-term studies using cells preincubated with acridine orange indicated that phagolysosomes containing live Histoplasma continued to maintain a relatively neutral pH for at least 30 h. Many agents raise the pH of multiple vesicles within the same cell. In contrast, H. capsulatum affects only the phagolysosome in which it is located; during coinoculation of cells with unlabeled Histoplasma and labeled zymosan, organelles containing zymosan still acidified normally. Similarly, unlabeled zymosan had no influence on the elevated pH of vesicles housing labeled Histoplasma. Thus, zymosan and Histoplasma were segregated into separate phagolysosomes that responded independently to their phagocytized contents. This localized effect might reflect an intrinsic difference between phagosomes housing the two particle types, active buffering by the microbe, or altered ion transport across the phagolysosomal membrane such that acidification is inhibited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cranial and Spinal Locations of Histoplasma capsulatum ‎var. duboisii in Brazzaville‎

Background: Histoplasma capsulatum var. duboisii is a rare fungus, endemic in southern Africa of the Sahara and Madagascar.  Objective: To describe the confirmed cases of histoplasmosis. Methods: This retrospective study was conducted at the division of neurosurgery of Brazzaville academic hospital in the Republic of Congo. Clinical records of all confirmed cases who were admitted between Jan...

متن کامل

Probing the yeast phase-specific expression of the CBP1 gene in Histoplasma capsulatum.

Histoplasma capsulatum is a pathogenic fungus that exists in two distinct forms. The saprophytic mycelial phase inhabits moist soil environments; once inhaled, hyphae and conidia convert to a unicellular yeast phase that is capable of parasitizing macrophage phagolysosomes. Yeasts cultures, but not mycelial cultures, release large quantities of a calcium-binding protein (CBP) which may be impor...

متن کامل

Human dendritic cell activity against Histoplasma capsulatum is mediated via phagolysosomal fusion.

Histoplasma capsulatum is a fungal pathogen that requires the induction of cell-mediated immunity (CMI) for host survival. We have demonstrated that human dendritic cells (DC) phagocytose H. capsulatum yeasts and, unlike human macrophages (Mø) that are permissive for intracellular growth, DC killed and degraded the fungus. In the present study, we sought to determine whether the mechanism(s) by...

متن کامل

Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum.

Pathogen-induced apoptosis of lymphocytes is associated with increased susceptibility to infection. In this study, we determined whether apoptosis influenced host resistance to the fungus Histoplasma capsulatum. The level of apoptotic leukocytes progressively increased in the lungs of naive and immune mice during the course of H. capsulatum infection. T cells constituted the dominant apoptotic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 177  شماره 

صفحات  -

تاریخ انتشار 1993